Infectious Complications in Vascular Patients

Shireesha Dhanireddy, MD
Medical Director, Infectious Disease Clinic
Harborview Medical Center
Associate Professor, Department of Medicine
University of Washington

25 May 2017
DISCLOSURES

Shireesha Dhanireddy, MD

- No relevant financial relationship reported
Objectives

• Overview of types of infections seen in vascular patients
• Epidemiology/Risk Factors
• General management strategies
• Prevention
Types of Infections

- Surgical wound infections
- Vascular graft infections
The Numbers

• SSI in vascular surgery: 4% to 25% - 43% depending on type of study
• Prosthetic graft infection: 0.5% - 6% depending on location
 – <1% for sub renal aortic bypass
 – 0.4% - 3% for open aortic aneurysm repair
 – 1-2% for aortofemoral bypass
 – up to 6% for infra-inguinal bypass
 – 3-8% for arteriovenous dialysis access grafts
 – Endovascular repair risk unclear, but appears to be very low (<1%)
• Death rate for VPGI: 15-75% (amputation rate ~70%)

Fitzgerald, J Antimicrob Therapy, 2005
Legout, Med et Mal Infectieuses, 2012
Surgical Wound Infections

• ‘07–’08 prospective multi-center Finnish study. Infrarenal aortic or lower limb arterial surgery. Standard pre-op prophy, in OR shaving. 1 m f/u.
 – 64 (35%) included prosthetics or patches
 – 49/184 (27%) with SSI (standard CDC definition)
 – 2 went on to amputation
 – 71% *S aureus*, then coag-negative staph, *E coli*
 – Risk factors for SSI: infrainguinal surgery, obesity, arteriography injection within the injection site.
 – Attributable cost: €3320 ($4359)

Turtiainen, Scand J Surg, 2010
Risk factors for surgical wound infection

- Increased age
- Obesity
- DM
- Infra-inguinal surgery
- Redo surgery
- ? arteriography within operative site
found in 32% of wounds. Patients presenting with early (<4 months) VSSI were most likely to have MRSA, whereas late-presenting patients (>4 months) were most likely to have *S. epidermidis*. Gram-negative organisms were found most often in early-presenting infections, with the exception of *Pseudomonas* species, which were cultured equally between the early and late groups. A substantial number of patients

<table>
<thead>
<tr>
<th>Pathogens by Infection Presentation Timing</th>
<th>Total (n = 87)</th>
<th>Early VSSI (n = 50)</th>
<th>Late VSSI (n = 37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure Gram positive</td>
<td>52 (60%)</td>
<td>27 (54%)</td>
<td>25 (68%)</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>MRSA</td>
<td>22</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>17</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>VRE</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pure Gram negative</td>
<td>8 (9%)</td>
<td>6 (12%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Pseudomonas</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Serratia</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Alcaligenes X</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Candida</td>
<td>1 (1%)</td>
<td>1 (2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Mixed</td>
<td>20 (23%)</td>
<td>13 (26%)</td>
<td>7 (19%)</td>
</tr>
<tr>
<td>Unknown/No growth</td>
<td>6 (7%)</td>
<td>3 (6%)</td>
<td>3 (8%)</td>
</tr>
</tbody>
</table>

NOTES: VSSI = vascular surgical site infection; MRSA = methicillin-resistant *Staphylococcus aureus*; VRE = vancomycin-resistant enterococci.
Vascular Graft Infection: A Model of Pathogenesis

Vascular surgery

DM
Vascular disease
Trauma
Tobacco use

Tissue injury
Lymphatic disruption
Hematoma formation

Prosthetic graft material

Bacterial biofilm production

1 month
<4 months
>4 months

Bacteria from endogenous or exogenous source

Clinical signs of graft infection and/or failure

MRSA?
Pseudomonas?
S. epidermidis?

Vascular surgery + antibiotics
Prevalence and outcome of prosthetic vascular graft infection: a review of patient characteristics, microbiological data, and treatment variables in a paucity of evidence.

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Survivors (n = 71)</th>
<th>Non-survivors (n = 14)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>66.8 ± 12</td>
<td>73.3 ± 7.9</td>
<td>0.04</td>
</tr>
<tr>
<td>Age ≥70 years</td>
<td>32 (45.1)</td>
<td>12 (85.7)</td>
<td>0.005</td>
</tr>
<tr>
<td>Male gender</td>
<td>61 (85.9)</td>
<td>13 (92.8)</td>
<td>0.47</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>5 (7)</td>
<td>0 (0)</td>
<td>0.3</td>
</tr>
<tr>
<td>Overweight/obesity</td>
<td>42 (59)</td>
<td>8 (57.1)</td>
<td>0.88</td>
</tr>
<tr>
<td>Severe renal insufficiency</td>
<td>5 (7)</td>
<td>2 (14.3)</td>
<td>0.36</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>20 (28)</td>
<td>4 (28.6)</td>
<td>0.97</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>11 (15.5)</td>
<td>0 (0)</td>
<td>0.11</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>12 (16.9)</td>
<td>4 (28.6)</td>
<td>0.3</td>
</tr>
<tr>
<td>Arterial hypertension</td>
<td>56 (78.8)</td>
<td>10 (71.4)</td>
<td>0.54</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>34 (47.9)</td>
<td>10 (71.4)</td>
<td>0.1</td>
</tr>
<tr>
<td>Aortic graft infection</td>
<td>42 (59)</td>
<td>12 (85.7)</td>
<td>0.06</td>
</tr>
<tr>
<td>Early-onset infection</td>
<td>44 (60.8)</td>
<td>5 (10.2)</td>
<td>0.08</td>
</tr>
<tr>
<td>Positive blood samples</td>
<td>23 (32.4)</td>
<td>6 (42.8)</td>
<td>0.45</td>
</tr>
<tr>
<td>Polymicrobial PVGI</td>
<td>14 (19.7)</td>
<td>6 (42.8)</td>
<td>0.06</td>
</tr>
<tr>
<td>PVGI caused by Gram-positive cocci</td>
<td>41 (83.7)</td>
<td>8 (16.3)</td>
<td>0.97</td>
</tr>
<tr>
<td>PVGI caused by Gram-negative bacilli</td>
<td>22 (31.0)</td>
<td>8 (57.1)</td>
<td>0.07</td>
</tr>
<tr>
<td>Surgical debridement with excision of infected graft</td>
<td>33 (46.5)</td>
<td>8 (57.1)</td>
<td>0.47</td>
</tr>
<tr>
<td>Admission to ICU</td>
<td>28 (39.4)</td>
<td>12 (85.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>Septic shock during the surgical procedure</td>
<td>12 (16.9)</td>
<td>5 (35.7)</td>
<td>0.1</td>
</tr>
<tr>
<td>Appropriate initial empirical antibiotic treatment</td>
<td>62 (87.3)</td>
<td>13 (92.5)</td>
<td>0.55</td>
</tr>
<tr>
<td>Use of aminoglycoside in the initial antibiotic treatment</td>
<td>23 (32.4)</td>
<td>5 (35.7)</td>
<td>0.8</td>
</tr>
</tbody>
</table>

ICU, intensive-care unit; PVGI, prosthetic vascular graft infection. Data are expressed as n (%) or mean ± standard deviation.
Imaging

- Contrast-enhanced CT: quick, image guided sampling
 - ~100% sensitive-specific in early infection
 - Decreases to ~55% in late infection
 - Anastomotic air bubbles? Should be gone after 7 weeks
 - Periprosthetic hematoma? <20% by 45 days, <10% by 100 days
Imaging

- MRI: not better than CT for early VPI, but only limited studies
- Nuclear medicine: maybe better than all above?
 - Scinitigraphy (tagged WBCs) appears to be superior for late VPI
 - PET-scanning sens 98.2%, spec 75.6%, PPV 88.5%, NPV 84.4%
 - Lacks anatomic data
 - Hard to access
- Doppler: good for thrombosis, collections
Diagnosis

• Positive intra-operative samples or blood cultures, preferably 2 for commensal bacteria
• Local or general clinical signs of infection: fever, chills, etc
• Lab or imaging: WBC > 10,000, CRP > 10 mg/L, fluid collections, periprosthetic air bubbles >6-8 weeks out, abscess or false aneurysm
• Think VPI when patient presents with a distant site infection in the months following surgery
Antimicrobials I

- Antibiotics should be held until samples are obtained unless patient is severely septic

- No consensus on best drug based on organism(s), timing of presentation, severity of infection, or status of prosthetic material/graft (daptomycin / linezolid / vancomycin?)

- Antibiotic therapy should be narrowed to the most specific, most potent, and least toxic drug possible as soon as culture results are available

- Treatment choices are based on experience, studies and extrapolations from other processes, such as orthopedic prosthetic joint infections and endocarditis
Antimicrobials II

Duration

– Arterial allograft/homograft or prostheses: 6 weeks IV + 6 months PO (at least). 6 week mark based on endothelialization of prosthesis

– Venous graft: 3 weeks

– If infected material remains in place: indefinite suppressive therapy with doxycycline, TMP-SMX, or a fluoroquinolone may be necessary
Surgical Approach

- Conventional / traditional approach
- Conservative / graft preservation approach
- Combined (modern?) approach
Other Therapies

- Antibiotic impregnated PMMA beads - only case series data
- Antibiotic powder - small case series
- Antibiotic-impregnated grafts
 - PTFE
 - Dacron (weaved/knitted, preclot/collagen/gelatin)
 - Rifampin (covers GPCs, no GNRs), lots of animal data, use supported by metaanalysis comparing extraanatomic bypass, cryopreserved allografts, autogenous veins and rif-dacron grafts - the latter appeared to be best option.
 - Effect on MRSA less clear

Lew and Moore, Sem Vasc Surg, 2011
O’Connor, J Vasc Surg, 2006
2010 Cochrane Review*

- 10 antibiotic prophylaxis vs placebo (YES)
- 10 different prophylactic abx or dose (NO)
- 3 short duration abx (<24h) vs longer duration (NO)
- 3 rifampicin impregnated graft material (prophylaxis) (NO)
- 3 preoperative skin antisepsis (NO beyond standard practices)
- 2 each: suction wound drainage, closed *in situ* bypass techniques (NO, NO)
- 1 each: wound closure technique, single dose abx (NO, NO)

oldest RCT 1981, newest 2000, most in ‘80s and ‘90s
Prevention

• Pre-operative washing with chlorhexidine soap
 – Decreases wound infection rates from 17.5 to 8%

• MRSA swab of nares and open wounds
 • If positive, vancomycin + cefazolin for peri-operative prophylaxis
Thank you